Уроки математики 3 класс
Задачи на приведение к единице - УМНОЖЕНИЕ И ДЕЛЕНИЕ - Вторая четверть - ЧАСТЬ 1 УЧЕБНИКА
Цели урока:
1) познакомить учащихся с новым типом задач на нахождение четвёртого пропорционального, научить решать задачи на приведение к единице;
2) совершенствовать вычислительные навыки, умение решать задачи в 2—3 действия.
ХОД УРОКА
1. Организационный момент.
2. Устный счёт.
Учащиеся получают карточки с номерами 30, 31, 37, 38, 42, 47, 49, 50, 51, 54, 59, 88 и т. д. На каждой карточке записано по 5 примеров на умножение и деление. Ученик записывает на карточке свою фамилию, устно выполняет вычисления и записывает ответы в окошки. Сумма полученных ответов должна быть равна номеру карточки.
3. Работа с новым материалом.
— Сегодня вы познакомитесь с новым видом задач и будете учиться их решать. Откройте учебник на с. 92 и прочитайте задачу, выделенную жёлтым цветом.
Задача. За 2 стакана чая заплатили 8 рублей. Сколько стоят 7 таких стаканов чая?
— Что обозначает число 2? (Количество стаканов.) Что обозначает число 8? (Стоимость двух стаканов чая.) Если известна стоимость стаканов чая и их количество, то что можно найти? (Цену одного стакана чая.) Как узнать цену одного стакана чая? (8 : 2.) Если известна цена одного стакана чая, можно ли узнать, сколько стоят 7 таких стаканов чая? (Да.) Как это сделать? (Цену одного стакана чая умножить на количество стаканов чая.)
Учитель записывает решение задачи на доске, а дети в тетради:
— Во сколько действий эта задача? (В 2 действия.) Какое первое действие? (Деление.) Что мы узнавали первым действием? (Цену одного стакана чая.) По-другому это действие называют приведением к единице. Какое второе действие? (Умножение.) Запишите решение задачи выражением.
4. Физкультминутка.
5. Работа с учебником.
Упр. 1, c. 92. Под руководством учителя учащиеся составляют и записывают задачу кратко:
18 п. — 6 т.
? — 4 т.
Затем учитель организует разбор задачи от вопроса к данным:
— Что требуется узнать в задаче? (Сколько пирожных на 4 таких тарелках.) Можно ли ответить на этот вопрос сразу, одним действием? (Нет.) Что неизвестно? (Сколько пирожных на одной тарелке.) А на этот вопрос можно ответить? (Да.) Почему? (Известно, что 18 пирожных разложили поровну на 6 тарелок.) Как узнать, сколько пирожных на одной тарелке? (18 : 6.) Что нужно узнать потом? (Сколько пирожных на 4 тарелках.) Как это узнать? (Результат, который получится в первом действии, умножим на 4.) Ответили вы на основной вопрос задачи? (Да.) Во сколько действий решается задача? (В 2 действия.) Запишите решение выражением.
Упр. 2, с. 93. Работа организуется аналогично предыдущему заданию.
Упр. 3, с. 94 учащиеся выполняют самостоятельно.
6. Физкультминутка.
7. Работа с учебником (продолжение).
Упр. 5, с. 93 можно предложить для самостоятельной работы в классе по вариантам. Учащиеся первого варианта вычисляют значения выражений двух первых строк, а учащиеся второго — значения выражений двух последних строк. В итоге проверки правильности вычислений учащиеся отвечают на поставленные вопросы о количестве чётных и нечётных чисел среди полученных результатов.
Упр. 6, с. 93. Учитель чертит на доске, а дети в тетрадях отрезок AB длиной 1 дм 5 см.
— Сколько сантиметров в 1 дм 5 см? (15 см.) Нужно разделить отрезок длиной 15 см на 5 равных частей. Какова длина одной части? (3 см.) Как узнать? (15 : 5.) Разделите отрезок AB точками на равные части, по 3 см каждая. Сколько точек вы отметили? (4 точки.) Какова длина двух частей этого отрезка, если одна часть составляет 3 см? (6 см.) Как узнать? (3 · 2.) Чему равна длина трёх таких частей? (9 см.)
Упр. 7, с. 93. Разбор задачи и составление краткой записи ведутся под руководством учителя. Решение задачи и ответ учащиеся записывают в тетради самостоятельно.
Упр. 8, с. 94 предназначено для устного выполнения.
8. Итог урока.